

graphe

graphe is a Python library for creating, traversing and visualising
graphs. Most algorithms are inspired by the Algorithms Course [1] by Robert
Sedgewick. The Python classes are reimplementations of Java code.

[image: _images/graph.png]

Graphviz visualisation of an undirected graph loaded from ‘mediumG.txt’, courtesy
R. Sedgewick, Princeton.

Note

This is a project under unpredictable development. Class names and code
organisation is subject to (breaking) changes.

Footnotes

[1]
Algorithms - https://algs4.cs.princeton.edu

Install

Installation

To use graphe, first install it using pip:

(.venv) $ pip install graphe

Local Install

To install locally from source

$ pip install .

Graph

	
class Graph(init)

	Creates a Graph object

	Parameters:

	init – if integer (V) initialize empty Graph with V vertices. If string (filename) load and populate from file.

	
add_edge(v, w)

	Connects vertices v and w, both must be smaller than V

	Parameters:

	
	v – vertice id

	w – vertice id

	
adj(v)

	Return a list of vertices adjacent to v

	Parameters:

	v – vertice id

	Return type:

	array of vertice ids

	
to_string()

	Create a string representation of the Graph

	Return type:

	string

BFSearch

	
class BFSearch(G, s)

	Does a breadth first search of G from s.

	Parameters:

	
	G – Graph object

	s – Vertex id of the starting point for search

	
bfs(G, s)

	Performs the breadth first search - called from constructor, should not be called directly

	Parameters:

	
	G – Graph object created by Graph or SymbolGraph

	s – Vertex id of the starting point for search

	
has_path_to(v)

	Does (G,s) have a path to vertex v?

	Parameters:

	v – Vertex id

	Return type:

	Boolean

	
path_to(v)

	Make one path to v from s

	Parameters:

	v – Vertex id

	Return type:

	array of vertex ids connecting v to s

	
count()

	Number of visited nodes when exploring (G, s)

	Return type:

	number of visited nodes

DFSearch

	
class DFSearch(G, s)

	Does a depth first search of G from s.

	Parameters:

	
	G – Graph object

	s – Vertex id of the starting point for search

	
dfs(G, v)

	Performs the depth first search - called from constructor, should not be called directly

	Parameters:

	
	G – Graph object created by Graph or SymbolGraph

	v – Vertex id of the starting point for search

	
has_path_to(v)

	Does (G,s) have a path to vertex v?

	Parameters:

	v – Vertex id

	Return type:

	Boolean

	
path_to(v)

	Make one path to v from s

	Parameters:

	v – Vertex id

	Return type:

	array of vertex ids connecting v to s

	
count()

	Number of visited nodes when exploring (G, s)

	Return type:

	number of visited nodes

Graph applications

These are examples of applications that uses graphs for their implementation.

Digraph classes

Digraph

	
class Digraph(init)

	Creates a Digraph object

	Parameters:

	init – if integer (V) initialize empty Digraph with V vertices. If string (filename) load and populate from file.

	
add_edge(v, w)

	Connects vertices v and w, both must be smaller than V

	Parameters:

	
	v – vertice id

	w – vertice id

	
adj(v)

	Return a list of vertices adjacent to v

	Parameters:

	v – vertice id

	Return type:

	array of vertice ids

	
reverse()

	Return the reversed Digraph

	Return type:

	Digraph

	
to_string()

	Create a string representation of the Digraph

	Return type:

	string

Directed Cycle

Detects cycles in Digraphs

	
class DirectedCycle(DG)

	
	Parameters:

	DG – Digraph object

	
has_cycle()

	
	Return type:

	boolean

	
get_cycle()

	
	Return type:

	list of vertices in the cycle

DepthFirstOrder

Performs a depth first search with support for returning visited nodes in
pre-order, post-order and reverse post-order.

	
class DepthFirstOrder(DG)

	
	Parameters:

	DG – Digraph object

	
get_pre()

	
	Return type:

	vertice list in pre-order

	
get_post()

	
	Return type:

	vertice list in post-order

	
get_reverse_post()

	
	Return type:

	vertice list in reverse post-order

DirectedDFSearch

	
class DirectedDFSearch(DG, s)

	Does a depth first search of Digraph from s.

	Parameters:

	
	DG – Digraph object

	s – Vertex id of the starting point for search

	
dfs(DG, v)

	Performs the depth first search - called from constructor, should not be called directly

	Parameters:

	
	DG – Digraph object

	v – Vertex id of the starting point for search

	
has_path_to(v)

	Does (DG, s) have a path to vertex v?

	Parameters:

	v – Vertex id

	Return type:

	Boolean

	
path_to(v)

	Make one path to v from s

	Parameters:

	v – Vertex id

	Return type:

	array of vertex ids connecting v to s

	
count()

	Number of visited nodes when exploring (Digraph, s)

	Return type:

	number of visited nodes

Regex

An implementation of regular expressions. Constructs a NFA Digraph of the
regular expression, then simulates the NFA using repeated depth first searches.

	
class Regex(expression)

	
	Parameters:

	expression – regular expression

	
match(text)

	
	Parameters:

	text – text string to be matched against the regex

	Return type:

	boolean

SymbolDigraph

Support Digraph objects with named edges.

	
class SymbolDigraph(filename)

	
	Parameters:

	filename – file to read

	
graph()

	
	Return type:

	Digraph object

	
node_names()

	List of node names corresponding to vertice ids

	Return type:

	array of node names

Topological Sort

Performs topological sort. Since this can only work on DAGs this code
raises an exception of a cycle is found.

	
class Topological(DG)

	
	Parameters:

	DG – Digraph

	
get_order()

	
	Return type:

	vertices in topological order

Digraph applications

These are examples of applications that uses Digraph algorithms for their
implementation.

Regex

Use non deterministic finite state automaton (NFA) simulation to implement
minimalistic regular expressions. The supported regex commands are

contatenation AB
grouping (ABC)
or A|B
closure A*B
wildcard A.B

Regex does not support common regex features such as ranges [], repeats {}, ‘?’ or ‘+’
as these are not fundamental

[A-E]* -> (A|B|C|D|E)*
(AB){3} -> ABABAB
(AB)+ -> AB(AB)*
(CD)? -> (|(CD))

Examples

CGC(CCG|CAG)*AGT Genomic repeats
.*ion 'ending' in ion (crossword)
.*Needle.* search for Needle (grep)
(0|(1(01*(00)*0)*1)*)* binary numbers which are a multiple of 3

	
class Regex(regex)

	Construct the NFA Digraph of epsilon transitions for the regular expression.

	
match(text)

	matches text against the given regexp by repeatedapplication of
DirectedDFSearch to explore the reachable states.

	Parameters:

	text – text string to match with regex

	Return type:

	boolean

Topological Search

Finds one solution (of potentially several) to the ‘scheduling’ problem where
some tasks must be preceded by others.

Utilities

Draw

	
class Draw(digraph=False)

	Prepares for drawing a graph/digraph. Creates a graphviz object and sets the initial graph attributes

	
set_names(names)

	Provide figure with names (from SymbolGraph) instead of ids

	Parameters:

	names – array [] of names for each vertex id

	
get_name(v)

	Use when drawing the figure, should not normally be called direcctly.

	Parameters:

	v – vertex id

	Return type:

	string

	
node_attr(**kwargs)

	Set graphviz attributes for nodes

	Parameters:

	**kwargs – List of graphviz keywords (e.g. color=’black’)

	
edge_attr(**kwargs)

	Set graphviz attributes for edges

	Parameters:

	**kwargs – List of graphviz keywords (e.g. penwidth=’0.75’)

	
draw(G, path=[])

	Draws the graph using the configured attributes and, optionally, showing the provided path

	Parameters:

	
	G – Graph object

	path – list of vertices on the path

File formats

This section describes the formats used for loading graphs from file.

Graph/Digraph

The format consist of two lines with number of vertives (V) and edges (E)
followed by E lines of edges between vertices. The format is the same for
Graph and Digraph.

$ cat tinyG.txt
13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

SymbolGraph

This format simply consists of lines containing named edges. In the below
example the space character ‘ ‘ is used as separator.

$ cat routes.txt
JFK MCO
ORD DEN
ORD HOU
DFW PHX
JFK ATL
ORD DFW
ORD PHX
ATL HOU
DEN PHX
PHX LAX
JFK ORD
DEN LAS
DFW HOU
ORD ATL
LAS LAX
ATL MCO
HOU MCO
LAS PHX

SymbolGraphII

This format simply consists of lines containing named edges.

The below example has multiple nodes per line and is using the ‘/’ as separator.

A line like

A/B/C/D

Is interpreted as adding three edges to the graph: A->B, A->C, A->D

$ cat jobs.txt
Algorithms/Theoretical CS/Databases/Scientific Computing
Introduction to CS/Advanced Programming/Algorithms
Advanced Programming/Scientific Computing
Scientific Computing/Computational Biology
Theoretical CS/Computational Biology/Artificial Intelligence
Linear Algebra/Theoretical CS
Calculus/Linear Algebra
Artificial Intelligence/Neural Networks/Robotics/Machine Learning
Machine Learning/Neural Networks

Usage

Creating a Graph object

from graphe.graph import graph
from graphe import draw

G = graph.Graph('mediumG.txt')

fig = draw.Draw()
fig.node_attr(label='')
fig.draw(G)

[image: _images/graph.png]

Breadth-first search

from graphe.graph import graph
from graphe.graph import bfs
from graphe import draw

G = graph.Graph('mediumG.txt')

bfs = bfs.BFSearch(G, 0) # make tree with root on vertex 0
bfpath = bfs.path_to(200) # find path to vertex 200 from 0

fig = draw.Draw()
fig.node_attr(label='')
fig.draw(G, bfpath)

[image: _images/short.png]

Depth-first search

from graphe.graph import graph
from graphe.graph import dfs
from graphe import draw

G = graph.Graph('mediumG.txt')

dfs = dfs.DFSearch(G, 0)
dfpath = dfs.path_to(200)

fig = draw.Draw()
fig.node_attr(label='')
fig.draw(G, dfpath)

[image: _images/long.png]

Directed Depth-first search

from graphe.digraph import digraph
from graphe.digraph import digraphdfs
from graphe import draw

DG = digraph.Digraph('mediumG.txt')

dfs = digraphdfs.DirectedDFSearch(DG, 0)
dfpath = dfs.path_to(197)

fig = draw.Draw(digraph=True)
fig.node_attr(label='')
fig.edge_attr(color='gray', arrowsize='0.2', penwidth='0.75')
fig.draw(DG, dfpath)

[image: _images/digraph_dfs.png]

SymbolGraph

from graphe.digraph import symboldigraph
from graphe import draw

SG = symbolgraph.SymbolGraph('routes.txt')

fig = draw.Draw()
fig.set_names(SG.node_names())
fig.node_attr(width='0.3', height='0.3', shape='circle', style='filled',
 color='gray', fontcolor='black', fontsize='8')
fig.draw(SG.graph())

[image: _images/symbolg.png]
When plotting you can manually add node name

node_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M']

G = graph.Graph('tinyG.txt')

fig = draw.Draw()
fig.set_names(node_names)
fig.node_attr(style='', fontcolor='black', fontsize='10')
fig.draw(G)

[image: _images/node_names.png]
And you can do breadth first search on SymbolGraph

SG = symbolgraph.SymbolGraph('routes.txt')

b = bfs.BFSearch(SG.graph(), SG.ST['LAX'])
path = b.path_to(SG.ST['HOU'])

fig = draw.Draw()
fig.set_names(SG.node_names())
fig.node_attr(width='0.3', height='0.3', shape='circle', style='filled',
 color='gray', fontcolor='black', fontsize='8')
fig.draw(SG.graph(), path)

[image: _images/symbol_graph_bfs.png]

Digraph

from graphe.digraph import digraph
from graphe import draw

DG = digraph.Digraph('tinyDG.txt')

fig = draw.Draw(digraph=True)
fig.node_attr(fontsize='8')
fig.draw(DG, [11, 12, 9, 11])

[image: _images/digraph_loop.png]

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	add_edge() (Digraph method)

 	(Graph method)

 	
 	adj() (Digraph method)

 	(Graph method)

B

 	
 	bfs() (BFSearch method)

 	
 	BFSearch (built-in class)

C

 	
 	count() (BFSearch method)

 	(DFSearch method)

 	(DirectedDFSearch method)

D

 	
 	DepthFirstOrder (built-in class)

 	dfs() (DFSearch method)

 	(DirectedDFSearch method)

 	DFSearch (built-in class)

 	
 	Digraph (built-in class)

 	DirectedCycle (built-in class)

 	DirectedDFSearch (built-in class)

 	Draw (built-in class)

 	draw() (Draw method)

E

 	
 	edge_attr() (Draw method)

G

 	
 	get_cycle() (DirectedCycle method)

 	get_name() (Draw method)

 	get_order() (Topological method)

 	get_post() (DepthFirstOrder method)

 	
 	get_pre() (DepthFirstOrder method)

 	get_reverse_post() (DepthFirstOrder method)

 	Graph (built-in class)

 	graph() (SymbolDigraph method)

H

 	
 	has_cycle() (DirectedCycle method)

 	has_path_to() (BFSearch method)

 	(DFSearch method)

 	(DirectedDFSearch method)

M

 	
 	match() (Regex method), [1]

N

 	
 	node_attr() (Draw method)

 	
 	node_names() (SymbolDigraph method)

P

 	
 	path_to() (BFSearch method)

 	(DFSearch method)

 	(DirectedDFSearch method)

R

 	
 	Regex (built-in class), [1]

 	
 	reverse() (Digraph method)

S

 	
 	set_names() (Draw method)

 	
 	SymbolDigraph (built-in class)

T

 	
 	to_string() (Digraph method)

 	(Graph method)

 	
 	Topological (built-in class)

 _images/graph.png

_images/long.png

_images/digraph_dfs.png

_images/digraph_loop.png

_images/symbol_graph_bfs.png
HOU

DFW!

ORD
DEN

PHX.

K

ATL

_images/symbolg.png

_images/node_names.png

_images/short.png

nav.xhtml

 Table of Contents

 		
 graphe

_static/plus.png

_static/file.png

_static/minus.png

